Remainders
Lecture 2

Justin Stevens
1. Problem Set 1 Review
 - Sum of First n Triangular Numbers
 - Properties of Divisibility
 - Equivalent Remainder

2. Modular Arithmetic

3. Exponents

4. Divisibility Rules Revisited

5. Backup Slides
Example. Find the sum of the first n triangular numbers.

Solution. We color the triangular numbers blue. We compute the top row by beginning with the circled 0 and adding the triangular number below it.

\[
\begin{array}{cccccccccc}
0 & 1 & 4 & 10 & 20 & 35 & 56 & 84 & 120 \\
1 & 3 & 6 & 10 & 15 & 21 & 28 & 36 \\
2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

What are the two rows directly below this?

Since the third row is constant, we expect our formula to be cubic.
Example. Find the sum of the first n triangular numbers.

Let $p(n) = an^3 + bn^2 + cn + d$. Can you find a, b, c, and d?

From the circled number, $p(0) = 0 \implies d = 0$. Plugging in $p(1) = 1$, $p(2) = 4$, and $p(3) = 10$ gives:

$$\begin{cases}
 a + b + c = 1 \\
 8a + 4b + 2c = 4 \\
 27a + 9b + 3c = 10.
\end{cases}$$

Solving this system gives $(a, b, c) = (\frac{1}{6}, \frac{1}{2}, \frac{1}{3})$. Hence,

$$p(n) = \frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n = \frac{n(n + 1)(n + 2)}{6}.$$
Properties of Divisibility

- **Transitive Property:** If $d \mid m$ and $m \mid n$, then $d \mid n$.
- **Linear Combinations:** If $d \mid n_1$ and $d \mid n_2$, then $d \mid n_1c_1 + n_2c_2$.
- **Dividing a Sum:** If $d \mid n_1, d \mid n_2, \cdots, d \mid n_k$, then $d \mid \sum_{j=1}^{k} n_j$.
- **Cancellation:** If $dc \mid nc$, then $d \mid n$.
Equivalent Remainder

Example. When we divide the numbers 1059, 1417, and 2312 by an integer \(d > 1\), the remainder is the integer \(r\). Find \(d\) and \(r\).

Solution. By the division algorithm, there exists three integer quotients \(q_1, q_2,\) and \(q_3\) such that

\[
\begin{align*}
1059 &= dq_1 + r \\
1417 &= dq_2 + r \\
2312 &= dq_3 + r.
\end{align*}
\]

We subtract the equations in pairs to get:

\[
\begin{align*}
358 &= d(q_2 - q_1), \\
895 &= d(q_3 - q_2), \\
1253 &= d(q_3 - q_1).
\end{align*}
\]

Hence, \(d\) must divide 358 = 2 \cdot 179, 895 = 5 \cdot 179, 1253 = 7 \cdot 179.

We therefore conclude that \(d = 179\).

Now, dividing 1059 by 179 gives 1059 = 179 \cdot 5 + 164. Therefore, \(r = 164\).
Outline

1. Problem Set 1 Review

2. Modular Arithmetic
 - Calendar Math
 - Definition
 - Addition/Subtraction
 - Caesar Shift Cryptography
 - Multiplication

3. Exponents

4. Divisibility Rules Revisited

5. Backup Slides
Calendar Math I

Modular Arithmetic is incredibly powerful and is used in cryptography, computer science, chemistry, music, and many other places.

Consider a simplified calendar system where the days of the week stay the same, but there is now only one month with 365 days. If the year begins on a Monday, then the first 20 days of the year look like the table below:

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

Example. What day of the week is day 31 on?
Example. What day of the week is day 31 on?

Solution. Extending our table two more rows:

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
</tbody>
</table>

We call the days that are Wednesdays congruent to 3 modulo 7. This is because the days of the week cycle with period 7. From the table above:

$$31 \equiv 24 \equiv 17 \equiv 10 \equiv 3 \pmod{7}.$$

Try dividing these numbers by 7.
Example. Analyze the congruence \(31 \equiv 24 \equiv 17 \equiv 10 \equiv 3 \) (mod 7).

\[
31 = 7 \cdot 4 + 3, \quad 24 = 7 \cdot 3 + 3, \quad 17 = 7 \cdot 2 + 3, \quad 10 = 7 \cdot 1 + 3.
\]

Every Wednesday is of the form \(7q + 3 \). We can rethink of the table as:

<table>
<thead>
<tr>
<th></th>
<th>Sun 7q</th>
<th>Mon 7q + 1</th>
<th>Tue 7q + 2</th>
<th>Wed 7q + 3</th>
<th>Thu 7q + 4</th>
<th>Fri 7q + 5</th>
<th>Sat 7q + 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q = 0)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>(q = 1)</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>(q = 2)</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>(q = 3)</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>(q = 4)</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
</tbody>
</table>

Example. Determine the weekday of day 75, 100, and 133.
Example. Determine the weekday of day 75, 100, and 133.

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7q$</td>
<td>$7q + 1$</td>
<td>$7q + 2$</td>
<td>$7q + 3$</td>
<td>$7q + 4$</td>
<td>$7q + 5$</td>
<td>$7q + 6$</td>
</tr>
</tbody>
</table>

Solution. We use the division algorithm!

- $75 = 7 \cdot 10 + 5$ which lies on a **Friday**.
- $100 = 7 \cdot 14 + 2$ which lies on a **Tuesday**.
- $133 = 7 \cdot 19 + 0$ which lies on a **Sunday**.

In general, $n = 7q + r, \ 0 \leq r < 7 \implies n \equiv r \pmod{7}$.

Hence, $75 \equiv 5 \pmod{7}$, $100 \equiv 2 \pmod{7}$, and $133 \equiv 0 \pmod{7}$.
Generalizing our work with days of the week, we have this definition:

Definition. If $n = dq + r$ where $0 \leq r < d$, then $n \equiv r \pmod{d}$.

r is said to be a modulo d residue. These consist of all possible remainders upon division by d, namely $\{0, 1, 2, 3, \ldots, d - 1\}$. This set is \mathbb{Z}_d.

An example is the **units digit**. The possible decimal units digit of a number are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. These form the modulo 10 residues.
Definition. A set \(\{a_1, a_2, a_3, \cdots, a_n\} \) is called a reduced residue set if for every integer \(b \), there exists exactly one index \(j \) such that \(b \equiv a_j \pmod{n} \).

For example, \(\{-41, 11, 2, 33, -7, 24, -1\} \) is a reduced residue set mod 7, since

\[
\{-41, 11, 2, 33, -7, 24, -1\} \equiv \{1, 4, 2, 5, 0, 3, 6\} \pmod{7}.
\]

However, \(\{1, 2, 3, 4, 5, 6, 8\} \) is not since \(1 \equiv 8 \pmod{7} \).
Definition. If \(n = dq + r \) where \(0 \leq r < d \), then \(n \equiv r \pmod{d} \).

If \(n_1 \equiv n_2 \pmod{d} \), then they leave the same remainder upon division by \(d \):

\[
\begin{align*}
n_1 &= dq_1 + r \\
n_2 &= dq_2 + r.
\end{align*}
\]

Hence, \(n_1 - n_2 = d(q_1 - q_2) \implies d \mid n_1 - n_2 \).
Modulo Addition/Subtraction

We add/subtract constants to the congruence $25 \equiv 11 \pmod{7}$.

- Blue represents an addition of 2.
- Orange represents a subtraction of 3.

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>
Modulo Addition/Subtraction

We add/subtract constants to the congruence $25 \equiv 11 \pmod{7}$.

- **Blue** represents an addition of 2.
- **Orange** represents a subtraction of 3.

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>

Adding 2 gives $27 \equiv 13 \pmod{7}$ and subtracting 3 gives $22 \equiv 8 \pmod{7}$.

Theorem. If $n_1 \equiv n_2 \pmod{d}$, then $n_1 + c \equiv n_2 + c \pmod{d}$ for integer c.

Justin Stevens

Modulos (Lecture 2) 15 / 49
Modulo Addition/Subtraction

We add/subtract constants to the congruence $25 \equiv 11 \pmod{7}$.

- **Blue** represents an addition of 2.
- **Orange** represents a subtraction of 3.

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>
Modulo Addition/Subtraction

We add/subtract constants to the congruence $25 \equiv 11 \pmod{7}$.

- **Blue** represents an addition of 2.
- **Orange** represents a subtraction of 3.

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>

Adding 2 gives $27 \equiv 13 \pmod{7}$ and subtracting 3 gives $22 \equiv 8 \pmod{7}$.
We add/subtract constants to the congruence $25 \equiv 11 \pmod{7}$.

- **Blue** represents an addition of 2.
- **Orange** represents a subtraction of 3.

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>

Adding 2 gives $27 \equiv 13 \pmod{7}$ and subtracting 3 gives $22 \equiv 8 \pmod{7}$.

Theorem. If $n_1 \equiv n_2 \pmod{d}$, then $n_1 + c \equiv n_2 + c \pmod{d}$ for integer c.
Consider the congruences \(16 \equiv 9 \pmod{7}\) and \(10 \equiv 3 \pmod{7}\).

Adding these congruences produces Fridays: \(26 \equiv 12 \pmod{7}\).

Tuesdays are of the form \(7q_1 + 2\) and Wednesdays \(7q_2 + 3\). Their sum is:

\[
(7q_1 + 2) + (7q_2 + 3) = 7(q_1 + q_2) + 5.
\]

This is a Friday!
Theorem. If m_1, m_2, n_1, n_2 are integers such that

\[
m_1 \equiv m_2 \pmod{d}
\]

\[
n_1 \equiv n_2 \pmod{d},
\]

then $m_1 + n_1 \equiv m_2 + n_2 \pmod{d}$.
Example 1. Compute the remainder when the sum

\[3 + 8 + 13 + 18 + \cdots + 1003 \]

is divided by 5.
Example. Decode the secret message ‘PDWK LV DZHVRPH’.

In order to encode this, I used something known as a Caesar shift. Essentially, I shifted every character in my original message by three letters.

Figure 1: Caesar Shift Cryptography for $k = 3$.

Using this, can you figure out my original message?
Example 2. Encode the message ‘PYTHON IS FUN’ using a Caesar shift with $k = 2$.

Example 3. Decode the message ‘YHUB ZHOO GRQH’ given it was encoded using a Caesar shift with $k = 3$.
Theorem. If we represent the letter A as 0 and Z as 25, we can think of the alphabet as a mod 26 system.

- To encode a letter x, we use the encoding $E_n(x) \equiv x + n \pmod{26}$.
- To decode a letter x, we use the decoding $D_n(x) \equiv x - n \pmod{26}$.
Modulo Multiplication I

We now multiplying the congruence $10 \equiv 3 \pmod{7}$ by constants.

- Blue represents a multiplication by 2.
- Orange represents a multiplication by 3.

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
</tbody>
</table>

Multiplying by 2 gives $20 \equiv 6 \pmod{7}$ and by 3 gives $30 \equiv 9 \pmod{7}$.

Theorem. If $n_1 \equiv n_2 \pmod{d}$, then for integer c, $n_1 c \equiv n_2 c \pmod{d}$.
Theorem. If $n_1 \equiv n_2 \pmod{d}$, then for integer c, $n_1 c \equiv n_2 c \pmod{d}$.

Proof. Since $n_1 \equiv n_2 \pmod{d}$, we have $d \mid n_1 - n_2$.

By our theorem yesterday, we can multiply a divisibility by a constant:

$$d \mid n_1 - n_2 \implies d \mid c(n_1 - n_2).$$

Expanding, we see that $c(n_1 - n_2) = n_1 c - n_2 c$. Therefore,

$$d \mid n_1 c - n_2 c \implies n_1 c \equiv n_2 c \pmod{d}.$$

Example. Find the units digit of $34 \cdot 62$. What do you notice?
Example. Find the units digit of $34 \cdot 62$. What do you notice?

Solution. Through multiplying, $34 \cdot 62 = 2108$, which has a units digit of 8. We see that 8 is the product of the units digit of 34 and 62.

In general, let the two numbers be $n = 10q_n + r_n$ and $m = 10q_m + r_m$:

\[
\begin{align*}
nm &= (10q_n + r_n)(10q_m + r_m) \\
&= 100q_nq_m + 10q_nr_m + 10q_mr_n + r_nr_m \\
&\equiv r_nr_m \pmod{10}.
\end{align*}
\]

The units digit of nm equals the product of the units digit of n and m.

Justin Stevens
Theorem. If m_1, m_2, n_1, n_2 are integers such that

\[m_1 \equiv m_2 \pmod{d} \]
\[n_1 \equiv n_2 \pmod{d}, \]

then $m_1 n_1 \equiv m_2 n_2 \pmod{d}$.
Example 4. The remainders when two natural numbers are divided by 12 are 7 and 9 respectively.

- Find the remainder when their product is divided by 12.
- Find the remainder when their product is divided by 4.
Example. The remainders when two natural numbers are divided by 12 are 7 and 9 respectively.

- Find the remainder when their product is divided by 12.
- Find the remainder when their product is divided by 4.

Solution. Let a and b be such that $a \equiv 7 \pmod{12}$ and $b \equiv 9 \pmod{12}$.

- Multiplying the congruences gives

 $$ab \equiv 7 \cdot 9 \equiv 63 \equiv 3 \pmod{12}.$$

- We wish to find the modulo 4 residues of a and b:

 $$a = 12q_1 + 7 = 4(3q_1 + 1) + 3$$
 $$b = 12q_2 + 9 = 4(3q_2 + 2) + 1.$$

 Therefore, $a \equiv 3 \pmod{4}$ and $b \equiv 1 \pmod{4}$. Multiplying gives:

 $$ab \equiv 3 \cdot 1 \equiv 3 \pmod{4}.$$
Outline

1. Problem Set 1 Review

2. Modular Arithmetic

3. Exponents
 - Factorizing $x^n - y^n$
 - Factorizing $x^n + y^n$
 - Exploration
 - Binomial Theorem

4. Divisibility Rules Revisited

5. Backup Slides
Example 5. Show that 3 always divides $4^n - 1^n$ for all integers n.

Example 6. Show that 5 always divides $7^n - 2^n$ for all integers n.
Example. Show that 3 always divides $4^n - 1^n$ for all integers n.

Solution.

$$4^2 - 1^2 = 16 - 1 = 15 = 3 \cdot 5$$
$$4^3 - 1^3 = 64 - 1 = 63 = 3 \cdot 21$$
$$4^4 - 1^4 = 256 - 1 = 255 = 3 \cdot 85$$
$$4^5 - 1^5 = 1024 - 1 = 1023 = 3 \cdot 341.$$

Do you notice anything interesting about the numbers on the right?

$$5 = 4 + 1$$
$$21 = 16 + 4 + 1$$
$$85 = 64 + 16 + 4 + 1$$
$$341 = 256 + 64 + 16 + 4 + 1.$$

These are all powers of 4. Why does this hold true?
Example. Show that 3 always divides $4^n - 1$ for all integers n.

Using the fact that $4 - 1 = 3$, we can rewrite the original equations as:

\[
\begin{align*}
4^2 - 1^2 &= (4 - 1)(4 + 1) \\
4^3 - 1^3 &= (4 - 1)(4^2 + 4 + 1) \\
4^4 - 1^4 &= (4 - 1)(4^3 + 4^2 + 4 + 1) \\
4^5 - 1^5 &= (4 - 1)(4^4 + 4^3 + 4^2 + 4 + 1).
\end{align*}
\]

In general, I claim that

\[
4^n - 1 = (4 - 1) \left(4^{n-1} + 4^{n-2} + \cdots + 4 + 1 \right).
\]

How do we prove this?
Example. Show that $4^n - 1 = (4 - 1) \left(4^{n-1} + 4^{n-2} + \cdots + 4 + 1 \right)$.

Solution. Let $S = 4^{n-1} + 4^{n-2} + \cdots + 4 + 1$. Then

\[
4S = 4^n + 4^{n-1} + 4^{n-2} + \cdots + 4^2 + 4
\]

\[
S = 4^{n-1} + 4^{n-2} + \cdots + 4^2 + 4 + 1
\]

Subtracting these equations yields $3S = 4^n - 1$. Substituting for S proves

\[
(4 - 1) \left(4^{n-1} + 4^{n-2} + \cdots + 4 + 1 \right) = 4^n - 1.
\]

Therefore, for all integers n, $3 \mid 4^n - 1$. Can we generalize this result?

\[
x^n - 1 = (x - 1) \left(x^{n-1} + x^{n-2} + \cdots + x + 1 \right).
\]

This is equivalent to the geometric series formula you see in algebra.
Theorem. For all positive integers n,

$$x^n - y^n = (x - y) \left(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots + y^{n-1} \right).$$

Therefore, $x - y \mid x^n - y^n$.
The previous are identical to $4^n \equiv 1 \pmod{3}$ and $7^n \equiv 2^n \pmod{5}$.

Theorem. For integers x and y, if $x \equiv y \pmod{d}$ then $x^n \equiv y^n \pmod{d}$.

Proof. $x \equiv y \pmod{d} \implies d \mid x - y$ and $x - y \mid x^n - y^n$. Hence,

$$d \mid x - y \mid x^n - y^n \implies d \mid x^n - y^n.$$

The conclusion is that $x^n \equiv y^n \pmod{d}$.

An alternative way is observing the congruences

$$x \equiv y \pmod{d} \quad x \equiv y \pmod{d}.$$

Multiplying them gives $x^2 \equiv y^2 \pmod{d}$. Multiplying again gives $x^3 \equiv y^3 \pmod{d}$. We can always increase the exponent by 1, hence, in general, $x^n \equiv y^n \pmod{d}$. This proof method is known as **induction**.
Factorizing $x^n + y^n$

Theorem. For all **odd** positive integers n,

$$x^n + y^n = (x + y) \left(x^{n-1} - x^{n-2}y + x^{n-3}y^2 + \cdots + y^{n-1} \right).$$

Therefore, for odd n, $x + y \mid x^n + y^n$.

Justin Stevens

Modulos (Lecture 2) 35 / 49
Example 7. Compute $5^{70} \pmod{31}$.

Example 8. Compute the units digit of 3^{711}.
Example. Compute $5^{70} \pmod{31}$.

Solution. Notice that $5^3 \equiv 1 \pmod{31}$, therefore

$$5^{70} = 5^1 \cdot (5^3)^{23} \equiv 5^1 \cdot 1^{23} \equiv 5 \pmod{31}.$$
Example. Compute the units digit of $3^{7^{11}}$.

Solution. Observe the following relations for nonnegative integer n:

\[
\begin{align*}
 n \equiv 0 \pmod{4} & \implies 3^n \equiv 1 \pmod{10} \\
 n \equiv 1 \pmod{4} & \implies 3^n \equiv 3 \pmod{10} \\
 n \equiv 2 \pmod{4} & \implies 3^n \equiv 9 \pmod{10} \\
 n \equiv 3 \pmod{4} & \implies 3^n \equiv 7 \pmod{10}.
\end{align*}
\]

We therefore wish to compute $7^{11} \mod 4$. Observe

\[
7^{11} \equiv (-1)^{11} \equiv -1 \equiv 3 \pmod{4}.
\]

Therefore,

\[
3^{7^{11}} \equiv 3^3 \equiv 7 \pmod{10}.
\]
Theorem. For every positive integer n,

$$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}.$$

Example 9. Show that 100 divides $11^{10} - 1$.
Example. Show that 100 divides $11^{10} - 1$.

Since $11 = 1 + 10$, we use the binomial theorem:

$$11^{10} = (10 + 1)^{10}$$

$$= \sum_{k=0}^{10} \binom{10}{k} 10^k 1^{10-k}$$

$$= 1 + \binom{10}{1} 10^1 + \binom{10}{2} 10^2 + \binom{10}{3} 10^3 + \cdots$$

$$\equiv 1 \pmod{100}.$$

The conclusion hence follows that $100 \mid 11^{10} - 1$.
Outline

1. Problem Set 1 Review
2. Modular Arithmetic
3. Exponents
4. Divisibility Rules Revisited
 - Divisibility Rules
5. Backup Slides
The system we conventionally use for writing numbers is known as \textit{decimal}.

In the decimal system, we write a number such as 1337 in terms of powers of 10. For instance, \(1337 = 10^3 + 3 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0 \). In general,

\[
n = a_k a_{k-1} \cdots a_2 a_1 a_0
= 10^k a_k + 10^{k-1} a_{k-1} + \cdots + 10^2 a_2 + 10^1 a_1 + a_0
= \sum_{j=0}^{k} (10^j \cdot a_j).
\]

Using decimal, we can prove the divisibility rules for 9 and 11.
Divisibility Rule for 9

Example. Show that a number is divisible by 9 if and only if the sum of its digits is divisible by 9.

Solution. Let the number be \(n \). We express \(n \) in decimal form:

\[
n = 10^k a_k + 10^{k-1} a_{k-1} + \cdots + 10^2 a_2 + 10^1 a_1 + a_0.
\]

Notice that \(10 \equiv 1 \pmod{9} \). Therefore, using modulo exponentiation:

\[
n = 10^k a_k + 10^{k-1} a_{k-1} + \cdots + 10^2 a_2 + 10^1 a_1 + a_0 \\
\equiv 1^k a_k + 1^{k-1} a_{k-1} + \cdots + 1^2 a_2 + 1^1 a_1 + a_0 \\
\equiv a_k + a_{k-1} + \cdots + a_2 + a_1 + a_0 \pmod{9}.
\]

Therefore, \(n \) is divisible by 9 if and only if the sum of its digits is.
Divisibility Rule for 11

Example. Show that a number is divisible by 11 if and only if the alternating sum of its digits is divisible by 11.

Solution. The alternating sum of digits of n is $a_0 - a_1 + a_2 - a_3 + \cdots + (-1)^k a_k$. Notice that $10 \equiv -1 \pmod{11}$. Therefore, using modulo exponentiation:

\[
\begin{align*}
n &= 10^k a_k + 10^{k-1} a_{k-1} + \cdots + 10^2 a_2 + 10^1 a_1 + a_0 \\
&\equiv (-1)^k a_k + (-1)^{k-1} a_{k-1} + \cdots + (-1)^2 a_2 + (-1)^1 a_1 + a_0 \\
&\equiv a_0 - a_1 + a_2 - a_3 + \cdots + (-1)^k a_k \pmod{11}.
\end{align*}
\]

Therefore, n is divisible by 11 if and only if the alternating sum of its digits is.
Divisible by 91 Problem

Example. (HMMT) For what single digit N does 91 divide the 9-digit number $12345N789$.

Solution. Since $1001 = 91 \cdot 11$, $10^3 = 1000 \equiv -1 \pmod{91}$. Now,

$$123450789 = 123 \cdot 10^6 + 450 \cdot 10^3 + 789$$

$$\equiv 123 \cdot 1 + 450 \cdot -1 + 789 \cdot 1$$

$$\equiv 32 + (-5) \cdot (-1) + 61$$

$$\equiv 98 \equiv 7 \pmod{91}.$$

Therefore, in order to find N:

$$12345N789 = 7 + 1000N \equiv 7 - N \equiv 0 \pmod{91} \implies N = 7.$$
Outline

1 Problem Set 1 Review
2 Modular Arithmetic
3 Exponents
4 Divisibility Rules Revisited
5 Backup Slides
Example. The remainders when two natural numbers are divided by 12 are 7 and 8 respectively.

- Find the remainder when their sum is divided by 12.
- Find the remainder when their sum is divided by 6.

Solution. Let a and b be such that $a \equiv 7 \pmod{12}$ and $b \equiv 8 \pmod{12}$.

- Adding the congruences gives
 \[
 a + b \equiv 7 + 8 \equiv 15 \equiv 3 \pmod{12}.
 \]

- We wish to find the modulo 6 residues of a and b:
 \[
 a = 12q_1 + 7 = 6(2q_1 + 1) + 1
 \]
 \[
 b = 12q_2 + 8 = 6(2q_2 + 1) + 2.
 \]
 Therefore, $a \equiv 1 \pmod{6}$ and $b \equiv 2 \pmod{6}$. Adding gives:
 \[
 a + b \equiv 1 + 2 \equiv 3 \pmod{6}.
 \]
Example. Show that 5 always divides $7^n - 2^n$ for all integers n.

Solution. As we did before, we begin by exploring this for small values of n:

\[
\begin{align*}
7^2 - 2^2 &= 49 - 4 = 45 = 5 \cdot 9 \\
7^3 - 2^3 &= 343 - 8 = 335 = 5 \cdot 67 \\
7^4 - 2^4 &= 2401 - 16 = 2385 = 5 \cdot 477
\end{align*}
\]

Do you see anything interesting about the coefficients on the right?

\[
\begin{align*}
9 &= 7^1 + 2^1 \\
67 &= 7^2 + 7^1 \cdot 2^1 + 2^2 \\
477 &= 7^3 + 7^2 \cdot 2^1 + 7^1 \cdot 2^2 + 2^3
\end{align*}
\]
Example. Show that 5 always divides $7^n - 2^n$ for all integers n.

Using the fact that $7 - 2 = 5$, we can rewrite the original equations as:

$$7^2 - 2^2 = (7 - 2)(7 + 2)$$
$$7^3 - 2^3 = (7 - 2)(7^2 + 7^1 \cdot 2^1 + 2^2)$$
$$7^4 - 2^4 = (7 - 2)(7^3 + 7^2 \cdot 2^1 + 7^1 \cdot 2^2 + 2^3).$$

In general, I claim that

$$7^n - 2^n = (7 - 2) \left(7^{n-1} + 7^{n-2} \cdot 2^1 + 7^{n-3} \cdot 2^2 + \ldots + 2^{n-1}\right).$$

Therefore, $5 | 7^n - 2^n$.