Fractals
Lecture 12

Justin Stevens
Outline

1. Fractals
 - Koch Snowflake
 - Hausdorff Dimension
 - Sierpinski Triangle
 - Mandelbrot Set
Definition. The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:
Definition. The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:

- Divide the line segment into three segments of equal length.
Definition. The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:

- Divide the line segment into three segments of equal length.
- Draw an equilateral triangle that has the middle segment from the previous step as its base and points outward.
Definition. The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:

- Divide the line segment into three segments of equal length.
- Draw an equilateral triangle that has the middle segment from the previous step as its base and points outward.
- Remove the line segment that is the base of the new triangle.
Figure 1: The Koch snowflake is one of the earliest discovered fractal curves. It is based on a 1904 paper titled “On a continuous curve without tangents, constructible from elementary geometry" by the Swedish mathematician Helge von Koch.
Perimeter of the Koch Snowflake

The number of sides of the Koch snowflakes increases by a factor of 4 each time, hence after \(j \) iterations, the number of sides is \(N_j = 4 \cdot N_{j-1} = 3 \cdot 4^j \).
Perimeter of the Koch Snowflake

The number of sides of the Koch snowflakes increases by a factor of 4 each time, hence after \(j \) iterations, the number of sides is \(N_j = 4 \cdot N_{j-1} = 3 \cdot 4^j \).

If the original equilateral triangle has side length \(S_0 = s \), after \(j \) iterations, \(S_j = S_{j-1}/3 = s/3^j \).
Perimeter of the Koch Snowflake

The number of sides of the Koch snowflakes increases by a factor of 4 each time, hence after \(j \) iterations, the number of sides is \(N_j = 4 \cdot N_{j-1} = 3 \cdot 4^j \).

If the original equilateral triangle has side length \(S_0 = s \), after \(j \) iterations, \(S_j = S_{j-1}/3 = s/3^j \). Thus the perimeter of the snowflake is given by

\[
P_j = N_j \cdot S_j = 3s \cdot \left(\frac{4}{3}\right)^j.
\]
Perimeter of the Koch Snowflake

The number of sides of the Koch snowflakes increases by a factor of 4 each time, hence after \(j \) iterations, the number of sides is \(N_j = 4 \cdot N_{j-1} = 3 \cdot 4^j \).

If the original equilateral triangle has side length \(S_0 = s \), after \(j \) iterations, \(S_j = S_{j-1}/3 = s/3^j \). Thus the perimeter of the snowflake is given by

\[
P_j = N_j \cdot S_j = 3s \cdot \left(\frac{4}{3}\right)^j.
\]

As the number of iterations tends to infinity, the limit of the perimeter is:

\[
\lim_{n \to \infty} P_n = \lim_{n \to \infty} 3s \cdot \left(\frac{4}{3}\right)^n = \infty.
\]

Hence the Koch curve has an infinite perimeter.
The number of sides of the Koch snowflakes increases by a factor of 4 each time, hence after j iterations, the number of sides is $N_j = 4 \cdot N_{j-1} = 3 \cdot 4^j$.

If the original equilateral triangle has side length $S_0 = s$, after j iterations, $S_j = S_{j-1}/3 = s/3^j$. Thus the perimeter of the snowflake is given by

$$P_j = N_j \cdot S_j = 3s \cdot \left(\frac{4}{3}\right)^j.$$

As the number of iterations tends to infinity, the limit of the perimeter is:

$$\lim_{n \to \infty} P_n = \lim_{n \to \infty} 3s \cdot \left(\frac{4}{3}\right)^n = \infty.$$

Hence the Koch curve has an infinite perimeter.
Area of the Koch Snowflake

In each iteration a new triangle is added on each side of the previous iteration, so the number of new triangles added in iteration \(j \) is

\[
T_j = N_{j-1} = 3 \cdot 4^{j-1} = 3/4 \cdot 4^j.
\]
Area of the Koch Snowflake

In each iteration a new triangle is added on each side of the previous iteration, so the number of new triangles added in iteration j is

$$T_j = N_{j-1} = 3 \cdot 4^{j-1} = 3/4 \cdot 4^j.$$

If a_0 is the area of the original triangle, then the area of each triangle is

$$a_j = \frac{a_{j-1}}{9} = \frac{a_0}{9^n}.$$

Area of the Koch Snowflake

In each iteration a new triangle is added on each side of the previous iteration, so the number of new triangles added in iteration j is

$$T_j = N_{j-1} = 3 \cdot 4^{j-1} = 3/4 \cdot 4^j.$$

If a_0 is the area of the original triangle, then the area of each triangle is

$$a_j = \frac{a_{j-1}}{9} = \frac{a_0}{9^n}.$$

Therefore, the total area of the snowflake after n iterations is

$$A_n = a_0 \left(1 + \frac{3}{4} \sum_{j=1}^{n} \left(\frac{4}{9}\right)^j\right).$$
Area of the Koch Snowflake

In each iteration a new triangle is added on each side of the previous iteration, so the number of new triangles added in iteration \(j \) is

\[
T_j = N_{j-1} = 3 \cdot 4^{j-1} = 3/4 \cdot 4^j.
\]

If \(a_0 \) is the area of the original triangle, then the area of each triangle is

\[
a_j = \frac{a_{j-1}}{9} = \frac{a_0}{9^n}.
\]

Therefore, the total area of the snowflake after \(n \) iterations is

\[
A_n = a_0 \left(1 + \frac{3}{4} \sum_{j=1}^{n} \left(\frac{4}{9}\right)^j\right)
\]

As \(n \to \infty \), this is an infinite geometric series with first term 1/3:

\[
A_n = a_0 \left(1 + \frac{1/3}{1 - 4/9}\right) = 8/5 \cdot a_0.
\]
Hausdorff Dimension

Definition. The **Hausdorff dimension** measures the *roughness* of a metric space. If S is the scaling factor and N is the mass-scaling factor, then

$$N = S^D \iff D = \log_S(N) = \frac{\log N}{\log S}.$$
Hausdorff Dimension of Koch Snowflake

\[3^D = 4 \]
\[D = \log_3(4) \approx 1.262 \]

Scaling factor: \(\frac{1}{3} \)

Mass scaling factor: \(\frac{1}{4} \)

Figure 2: 3Blue1Brown
Definition. The Sierpinski triangle starts with an equilateral triangle and recursively divides each triangle into four smaller congruent equilateral triangles and removes the central one.
Definition. The Sierpinski triangle starts with an equilateral triangle and recursively divides each triangle into four smaller congruent equilateral triangles and removes the central one. The first five iterations are:
Definition. The Sierpinski triangle starts with an equilateral triangle and recursively divides each triangle into four smaller congruent equilateral triangles and removes the central one. The first five iterations are:

The Hausdorff Dimension is given by $2^D = 3 \iff D = \log_2 3 \approx 1.585$.
Figure 3: Take Pascal’s triangle with 2^n rows and color the even numbers white and the odd numbers black
“How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension" is a 1967 paper by Benoit Mandelbrot.

Figure 4: If the coastline of Great Britain is measured using units 100 km long, then the length of the coastline is approximately 2,800 km. With 50 km units, the total length is approximately 3,400 km, approximately 600 km longer.
The Mandelbrot set is a family of complex quadratic polynomials given by

\[P_c : z \mapsto z^2 + c, \]

where \(c \) is a complex number.
The Mandelbrot set is a family of complex quadratic polynomials given by

$$P_c : z \mapsto z^2 + c,$$

where c is a complex number. For each c, one considers the behavior of

$$(0, P_c(0), P_c(P_c(0)), P_c(P_c(P_c(0))), \cdots)$$

obtained by iterating $P_c(z)$ starting at critical point $z = 0$. This either escapes to infinity or stays within a disk of some finite radius. The Mandelbrot set is defined as the set of all points c such that the above sequence does not escape to infinity. Specifically, $|P_n^c(0)| \leq 2$ for all $n \geq 0$.

Justin Stevens
Fractals (Lecture 12) 12 / 14
The Mandelbrot set is a family of complex quadratic polynomials given by

\[P_c : z \mapsto z^2 + c, \]

where \(c \) is a complex number. For each \(c \), one considers the behavior of

\[(0, P_c(0), P_c(P_c(0)), P_c(P_c(P_c(0))), \cdots) \]

obtained by iterating \(P_c(z) \) starting at critical point \(z = 0 \). This either escapes to infinity or stays within a disk of some finite radius.
The Mandelbrot set is a family of complex quadratic polynomials given by

\[P_c : z \mapsto z^2 + c, \]

where \(c \) is a complex number. For each \(c \), one considers the behavior of

\((0, P_c(0), P_c(P_c(0)), P_c(P_c(P_c(0))), \cdots)\)

obtained by iterating \(P_c(z) \) starting at critical point \(z = 0 \). This either escapes to infinity or stays within a disk of some finite radius. The Mandelbrot set is defined as the set of all points \(c \) such that the above sequence does not escape to infinity. Specifically, \(|P_c^n(0)| \leq 2 \) for all \(n \geq 0 \).
First Mandelbrot Set

*

* ********
*** ****************
* **************************** *
** ****************************
*** ****************************
** ****************************
*** ****************************
** ****************************
* ****************************
*** ****************************
** ****************************
*** ****************************
* ****************************
*** ****************************
Modern Mandelbrot Set